Review on Potential Eco-friendly Biolarvicides against Dengue Vector: *Aedes aegypti* (Linn) (Diptera: Culicidae)

Laxmikant Shinde¹, Mamta Goyal², Ranjit Bayas², Satish Patil³

¹Applied Parasitology Research Laboratory, Department of Zoology, JES College, Jalna(431203). Maharashtra, INDIA.

²Research scholar, Applied Parasitology Research Laboratory, Department of Zoology, JES College.Jalna (431203) M.S.

³Department of Micro-biology, North Marathwada University, Jalgaon, Maharashtra, INDIA.

Email id: mailto.mamtamallawat@gmail.com

Abstract: Mosquito species serves as a vector for the transmission of various diseases to human beings. One of these species, *Aedes aegypti* acts as a vector source for the spread of viral disease dengue fever. Presently numerous chemi-insecticides and repellants are available which are commonly used as a preventive measure. But, use of these insecticides poses various other ill-effects which includes allergies like skin itching, encephalopathy skin eruption, respiratory disorders as well as harmful to environment. So overcome these adverse effects due to synthetic mosquitocides. There is a need to develop repellants and mosquito larvicidal from botanical origin. They are target specific, biodegradable, cheap, easily available and ecofriend to our environment.

The aim of present review is to shower light on biolarvicides to control vector Aedes aegypti from currently available research literature. For this purpose, original research articles from major databases were studied. Our literature review show that 212 essential oils from 145 plant species belonging to 54 families which had been tested for larvicidal property against *Aedes aegypti*. These biolarvicides were extracted using various techniques and 19 different solvents. Out of these, 57 extracts of essential oils shows LC50 values less than 100ppm, 17 extracts shows LC50 values of less than 100mg/lit and 42 extracts has LC50 values less than 100 μ g/ml. Biolarvicides are safe, effective, target specific, biodegradable and eco-friendly in nature. These should be promoted more to control vector species.

Keywords: Aedes aegypti, biolarvicides, LC50 and dengue fever.

1. INTRODUCTION

Dengue emerged in the second half of the twentieth century as a major public health concern in many tropical and subtropical regions around the world.(WHO, 2009)[67]. It is currently the most important mosquito-borne, human viral disease. Dengue fever viruses (DENV) are positive stranded RNA virus of the family Flaviviridae and genus Flavivirus [73]. Dengue is a self limiting acute mosquito transmitted disease characterized by fever, headache, muscle, joint pains, rash, nausea and vomiting. As Dengue Fever (DF) is spread by *Aedes* mosquitoes, it is also referred as arboviral disease. Some infections result in Dengue Hemorrhagic Fever (DHF) and in its severe form Dengue Shock Syndrome (DSS) can threaten the patient's life [76]. Dengue illnesses are caused by any of the four serologically related viruses designated as DENV-1, DENV-2, DENV-3 and DENV-4[74].Till now, dengue fever was believed to be caused by these four different serotypes. The discovery of fifth variant DENV-5 has been isolated in October 2013 from Sirawak city in Malaysia. This serotype follows the sylvatic cycle unlike the other four serotypes which follow the human cycle. There is no indication of the presence of DENV-5 in India [75].

1.1 Global Scenario of Dengue:

The incidence of dengue has grown dramatically around the world in recent decades. The actual numbers of dengue cases are under reported and many cases are misclassified. The published data and cases of Dengue Fever are reported only from cases registered in government hospitals and not from private hospitalized cases (Various Newspaper articles). An estimated 40% of the global population (~3.9 billion) is at risk of dengue virus (DENV) infection [77,78, 89]. About 2.5% of people affected with severe dengue die each year [79]. One recent estimate indicates 390 million dengue infections per year 95% credible interval 284–528 million, of which 96 million (67–136 million) manifest clinically (with any severity of disease) [68]. Another study, of the prevalence of dengue, estimates that 3.9 billion people, in 128 countries, are at risk of infection with dengue viruses [69]. The disease is endemic in more than 125 countries and the spread to newer areas is mainly attributed to returning travelers from endemic countries [80, 81]. Overall research indicates that dengue spread its boundary and burden day by day since last decades.

1.2 Indian Scenario of Dengue:

The resurgence of dengue poses a major challenge as all the four serotypes of dengue have been reported from various parts of India [82]. The resurgence of DF in the country can be attributed to rapid development and economic expansion which not only led to urbanization but also increased movement of people between cities and states. In India, every year cases are spreading to newer geographical areas [NVBDCP- annual report: 2014-15]. Recently the dengue expands its boundary even in rural parts of India.

1.3 Epidemiology Situation in India during last decade:

During 2006-2008, 18 States and Union Territories (UTs) reported dengue cases. The number increased to 20 and 29 during 2009 and 2010 respectively. In 2010 total 28292 cases and 110 deaths have been reported. During 2012, 50222 cases and 242 deaths and during 2013, 75808 cases and 193 deaths were reported. Highest number of deaths were reported by Maharashtra (48) followed by Kerala (29) and Punjab (25). Up to November, 2014, 33320 cases and 86 deaths have been reported in Annexure-5[Information source: NVBDCP].

India serves 6-9% of total cases in South-East Asian Region (SEAR) countries between 2009 and 2011, which has increased to 19% in 2013[83]. Now Dengue is endemic in all States and UTs of India .According to the National Vector Borne Disease Control Programme [NVBDCP] data, the worst affected areas in India in 2015 were Delhi, Punjab, Haryana, Gujarat, Karnataka and Kerala with a range of about 4000–15,000 cases and 9–60 deaths [85] and also a total of 99,913 dengue cases and 220 deaths were reported from 35 States/UTs areas during 2015. Recurring outbreaks of dengue have been reported from Andhra Pradesh, Delhi and Goa. Over the years [70]. During 2016: 1, 29,166 dengue cases and 245 deaths were reported whereas in 2017: number of dengue cases rises to 1, 53,635 and 226 deaths[Data source: NVBDCP,India].

A recent review has reported that India alone contributes to 34 %(about 33 million infections) of the total global threat of dengue leading to hyper-endemicity, prevailing mostly in urban areas [84]. However, the wide spread problem of underreporting of dengue cases from India has come into focus very recently and the real burden of dengue in the country is heavily ignored [86, 87]. The annual number of dengue fever cases in India is many times higher than it is officially reported [88]. A recent study reports that an average of six million people a year in India had a symptomatic illness between 2006 and 2012 with dengue [86].

1.4 Factors contributing to the spread of Dengue in India:

Risk of dengue and geographical spread of Dengue has shown an increase in recent years due to various factors in urban, sub-urban and rural areas, leading to proliferation of mosquito breeding sites. These include: rapid and unplanned urbanization; population growth; increasing inadequate municipal services; increased use of non-biodegradable products (bottles, plastic, cans, tyres) and also an unaccustomed growth in the population movement and commodities via travel and commerce[NVBDCP,90].

In India, *Ae. aegypti* is the main vector in most urban areas; however, *Ae. Albopictus* is also found as vector in few areas of Southern and Eastern India. *Ae. aegypti* mosquito breeds mostly in manmade containers, whereas, *Ae. Albopictus* breeds mainly in natural larval habitats like tree holes, leaf axils and coconut shells etc. Unlike other mosquitoes, it is a daytime feeder; its peak biting activity is in the morning and in the evening before dusk [Who, India, NVBDCP -2015

ISSN 2348-313X (Print) International Journal of Life Sciences Research ISSN 2348-3148 (online) Vol. 6, Issue 3, pp: (61-80), Month: July - September 2018, Available at: www.researchpublish.com

(91)]. The population of *Ae. aegypti* fluctuates with rainfall and humidity [67,89]. Under optimal conditions the life cycle of aquatic stage of the *Ae. aegypti* - the time taken from hatching to adult emergence is seven days in optimal condition (temperature 25±50C and relative humidity 70-80%).

- ✤ Higher temperature favors larval development and rate of emergence of adult mosquito.
- Higher rainfall increases the number of flooded breeding sites and Lower rainfall prompts people to store water mosquitoes use these containers as breeding sites.
- Humidity influences mosquito lifespan and in turn the potential for virus transmission will be greater [90]. Aedes can fly up to a limited distance of 400 meters [91].

The rural spread of *Aedes* is associated with expanding network of rural water supply schemes and other development projects without health impact assessments, scarcity of water with consequent water storage, changing lifestyle with improper use of desert coolers and indiscriminate use of disposable containers, bottles, etc. and improved transport system and population movement.[95, 96, 97]

1.5 Dengue affected areas since 1991

2. VECTOR CONTROL METHODS

Vector control is known to be a good method for prevention of vector borne diseases. It is said that, Vectors May Be A Threat to You At Home And When Travelling."At present, stopping of invasion of Aedes transmitting mosquitoes is the only method to prevent or control dengue virus [90]. A range of *Aedes* control methods now exists.

- Environmental sanitation measures to reduce mosquito breeding sites, such as physical management of water containers (e.g. mosquito-proof covers for water storage containers, polystyrene beads in water tanks), better designed and reliable water supplies, and recycling of solid waste such as discarded tyres, bottles, and cans.[92,93,94]
- Biological methods (e.g. fish, Copepods small crustaceans that feed on mosquito larvae) to kill or reduce larval mosquito populations in water containers.[98]

- Chemical methods against the mosquito's aquatic stages for use in larger water containers (e.g. Temephos) [98].
- Chemical methods directed against adult mosquitoes, such as insecticidal sprays (98).
- Personal protection through use of repellents, vaporizers, mosquito coils, and insecticide treated screens, curtains, and bed nets during daytime against *Aedes* [98].

The evolution and spread of resistance to insecticides is a major concern for the control of dengue vector. Bioassay data demonstrate that resistance to organophosphates (Temephos) and pyrethroids is widespread in *Ae. aegypti* and resistance has also been reported in Ae. albopictus [79,WHO,2012-2020] so the ultimate method left to control larval mosquito species is use of essential oils of plant origin as mosquito biolarvicide [97]. These essential oils are effective as ovicidal, larvicidal, oviposition deterrant, repellant, adulticidal activities against vector mosquito species. It contents a bioactive component from indigenous source which help us in vector control.[99]

2.1 Meaning of Biolarvicide:

Biolarvicides are plant derived essential oils extracted from diverse plant species using various solvents and tested for its potential as to kill immature stages of mosquito larvae.

2.2 Benefits of Essential Oils:

Essential oils are volatile aromatic liquids created by plants to help them maintain their own health and vitality. Essential oils have been used by mankind for thousands of years to help enhance physical, mental, emotional, and spiritual health. Science has only recently begun to unfold how these precious liquids, and the chemical compounds they contain, can work to affect the body and mind [71].

2.3 Industrial Uses of Essential Oils:

Essential oils have a significant role in the society where they are variously used in fields such as medicine, pharmacy, cosmetics, chemical and food-processing industries [70]. All pure essential oils have some anti-bacterial properties. They increase the production of white blood cells, which helps to fight against infectious illnesses. It is through these properties that aromatic herbs have been esteemed so highly throughout the ages and so widely used during the onsets of malaria, typhoid, and also during, the epidemic plagues during the 16th century. Research has found that people who consistently use pure essential oils have a higher level of resistance to illnesses, colds, flues, and diseases than the average person [71]. The bioactive components in essential oils also possess the antiviral, antifungal and antilarval activities.

2.4 Biolarvicidal Plant parts:

Though each part of plant possess some kind of larvicidal activity due to presence of alkaloids, flavonoids, terpenes, fatty acids, hydrocarbons, steroids, saponins compounds. However, choice of plant part is most important. During study, it was observed that seeds and fruits of species show more lethality than leaves. In *Calophyllum inophyllum*, the LC50 values of seeds and leaves extract are 8.2mg/ml and 35 mg/ml respectively [56]. In *Rhizophora mucronata, Rhizophora apiculata, and Bruguiera cylindrica,* the LC50 values in the extracts of stiltroot, bark, hypocotyl, collar, leaf shows increase trend in ethanolic extracts [51].

The various plant parts in review includes leaves ,seeds , fruits, flowers, rhizome, stem , bark, wood, roots, whole plants, hypocotyls, collar, bud, berry. Here in, we had most data on leaves (91) followed by seeds (16) and whole plants (09).

2.5 Choice of solvent for extraction of Biolarvicide product:

It is also one of the most important part of consideration. As proper choice of solvent is must to get efficient results of larvicidal activity of mosquito larvae under study. Bioactive component of interest must get extracted in solvent selected [122]. Based on polarity of solvent, the solvents used for extraction can be categorized as follows:

- (1) Non Polar solvent : It includes hexane, benzene, petroleum ether, diethyl ether
- (2) Polar solvent: It includes methanol, ethanol, propanol, butanol, ethyl acetate, acetone. Most preferred polar solvent includes ethanol followed by methanol while in non- polar solvents, preferred choice is hexane followed by petroleum ether.

ISSN 2348-313X (Print) International Journal of Life Sciences Research ISSN 2348-3148 (online) Vol. 6, Issue 3, pp: (61-80), Month: July - September 2018, Available at: www.researchpublish.com

Hence, the choice of solvent is very important as phytochemicals show differing miscibility of bioactive component in different solvents and in turn shows differing range of activity of extract. For instance, the leaf extracts of *Alternanthera sessilis* in butanol, propanol, ethanol, hexane shows LC50 values of 54.79 mg/ml, 75.94 mg/ml, 91.17 mg/ml, 163.81 mg/ml indicates an increase in LC50 values from polar to non polar solvent. In contrast to this, *Amarnthus dubius* show decrease in LC50 values from polar to non polar solvent [20]

2.6 Essential oils as biolarvicide:

Т

Т

Г

The aim of research focused on seeking new essential oils that could become suitable active substances for new botanical larvicidal, thereby providing an eco-friendly substitute over some risky synthetic insecticides.[100].

The purpose of this review is to evaluate the current biological efficacy of plant parts extracts as larvicidal against dengue fever vector *Aedes aegypti*. It includes articles selected from available literature which covers 145 plant species belonging to 54 families. These biolarvicides were extracted using various methods and 19 different solvents and assessment was done with the criteria of efficacy of extracts as biolarvicidal and having LC50 values less than either100ppm.(100 mg/L or 100 µg/ml, 10 mg/ml)

Table 1: This table gives the summary about diversity of plant species showing larvicidal activity against larval instars of Aedes aegypti. It also highlights the information of the plant part used, Stage of larval instars, solvent used for extraction of essential oils (biolarvicidal product), values of lethal concentration of extract which causes 50% and 90% mortality in larvae i.e. LC50 and LC90 values after 24 hours of exposure of larvae to concentration gradient.

Family &Scientific Name of species	(Common Name)	Larval instar used for bioassay	Plant Parts Used	Solvent used for extraction of essential oil	LC50 Value	LC90 Value	Ref No
		Fa	mily:-Acanth	aceae			-
Rhinocanthus nasutus	Snake Jasmine	Late III and early IV	Roots	75% alcohol	16.04mg/Lit	47.08mg/Lit	1
		Ι			113.661ppm	247.062 ppm	
Andrographis	King of	II	Loof	Asstons	149.068 ppm	268.120ppm	16
paniculata(Burm.F)	Bitters	III	Lear	Acetone	162.731 ppm	309.342ppm	40
		IV			216.888ppm	389.015ppm	
B.maderaspatensis	Hajarmani	IV	Leaf	Ethyl acetate	197.6 ppm	438.0 ppm	13
		F	amily:-Acora	ceae			
	Sweet as as	III - IV instan	Dhigomo	Ethyl alcohol	64.22mg/L	130.37 mg/L	4
Acorus catamus	Sweet sage	m+iv mstar	Kilizoille	Petroleum ether	57.32 mg/L	120.13 mg/L	4
		Fam	ily:-Amarant	haceae			
				Hexane	163.81 mg/L	394.69 mg/L	
Altomanthana accellia	Sessile		Leaf	Butanol	54.79 mg/L	130.79 mg/L	20
Alternantnera sessitis	Joyweed	111		Propanol	75.94 mg/L	187.87 mg/L	20
				Ethanol	91.17 mg/L	206.71 mg/L	
				Hexane	161.21 mg/L	408.93 mg/L	
American	Spleen	TTT		Butanol	320.94 mg/L	891.73 mg/L	20
Amarantnus audius	amaranth	111	Lear	Propanol	249.21 mg/L	790.65 mg/L	20
				Ethanol	130.37 mg/L	321.88 mg/L	
Achranthes aspera	Pricklychaff flower	Early IV	Stem	Hexane	57.50 ppm	90.84 ppm	28

Table 1

T

Т

ISSN 2348-313X (Print) ISSN 2348-3148 (online)

International Journal of Life Sciences Research

Celosia argentia	Plumed cockscomb	Early III	Leaf	Ethanol	134.4 ppm	-	41				
Family:-Amaryllidaceae											
Allium sativum	Garlic	Early IV	Stem	Hexane	218.35 ppm	434.76 ppm	28				
Apium graveolens	Onion	IV	Seeds	Methanol	LC100	= 50 μg/ml	5				
Family:-Anacardiaceae											
Magnifera indica	Mango	III	Leaves	Methanol	630.39 ppm	LC95=779.08ppm	24				
Family:-Annonaceae											
Annona squamosa	Custard apple	Larvae IV inst.	Leaf	Acetone	190.5 ppm	323.6 ppm	3				
Annona muricata	Sour Sop		Root	Ethanol	42.3 µg/ml	200 µg/ml					
Annona crassiflora	Marolo		Root wood	Ethanol	0.71µg/ml	5.12µg/ml	15				
Annona glabra	Pond apple		Seed	Ethanol	0.06µg/ml	2.75 µg/ml					
		Fa	amily:-Astera	ceae	-	• •	-				
				Benzene	151.38 ppm	274.34 ppm					
				Hexane	165.10 ppm	297.70 ppm					
Eclipta alba	Bhringraj	Early III	Leaf	Ethyl acetate	154.88 ppm	288.61 ppm	45				
				Methanol	127.64 ppm	245.73 ppm					
						Chloroform	146.28 ppm	274.42 ppm			
Tagetes erecta	Marigold	III	whole plant	Hydro distillation	48.951ppm	-	34				
Ageratina adenophora	Sticky snakeroot	Early III	Leaf	Methanol	132.82 ppm	231.12 ppm	66				
		F	amily:-Apiac	eae			-				
Trachyspermum ammi	Ajwain	Early IV	Fruit	Hexane	65.57ppm	108.90 ppm	28				
		Fai	nily:-Apocyn	aceae			-				
Thevatia peruviana	Mexican oleander	Early III	Leaf	Methanol	101.07 ppm	131.21 ppm	32				
Alstonia scholaris	Scholar's tree	IV	Leaf	Acetone	239.9 ppm	501.2 ppm	3				
Ervatamia coronaria	Crepe jasmine	Early III	Leaf	Methanol	65.67 mg/l	127.24 mg/L	60				
Catharanthus resource	Doriwinklo	II	Loof	Acetopa	75.31 ppm		105				
Cumuraninus roseus	I en winkle	IV	Leai	Acetolie	156.85 ppm	_	105				
		Fam	ily:-Asclepia	daceae							
				Methanol	194.8mg/L						
Calotropis progura	Pubborbush	Late III+Early	Saada	Acetone	368.1mg/L	1	106				
Caloiropis procura	Kubberbusii	IV	Seeus	Petroleum ether	24.1mg/L	-	100				
				Aqueous	12.2mg/L						
		Fai	nily:-Asphod	aceae							
				Hexane	0.11mg/ml	0.48 mg/ml					
Alor nonogenesis	Indian aloe	III	Leaf	Ethyl acetate	0.15 mg/ml	0.32 mg/ml	23				
moe nogogenesis	manan aloc		Lai	Chloroform	0.34 mg/ml	0.61 mg/ml	23				
					Methanol	0.39 mg/ml	0.81 mg/ml				

International Journal of Life Sciences Research ISSN 2348-3148 (online)

	1	l	I		0.77 (1	1.57 ()	I
				Acetone	0.77 mg/ml	1.57 mg/ml	┥
Aloe turkanensis	Kenya aloes	111	Leaf	Ethyl acetate	0.11 mg/ml	0.19 mg/ml	4
				Hexane	0.05mg/ml	0.09mg/ml	-
Aloe fibrosa	-	III	Leaf	Acetone	0.67mg/ml	1.83mg/ml	_
				Methanol	3.89mg/ml	7.74mg/ml	
		Fa	amily:-Betula I	ceae			т —
Alnus glutinosa	Black alder	III	Old litter	Tannic Acid	7650 mg/L	-	64
	1	Fa	mily:-Basella	iceae			
				Hexane	122.64 ppm	256.43 ppm	
Resella ruhra	Malabar	Ш	Leaf	Acetone	72.63 ppm	137.28 ppm	8
Desetta Habita	spinach		Loui	Benzene	53.62 ppm	86.42 ppm	Ũ
				Methanol	63.28 ppm	112.4 ppm	
		Fai	mily:-Bignoni	aceae			
Cybistax antisyphilitica	fruiting branch	-	Stem wood	Hexane	26.3 µg/ml	-	39
Adenocalymma alliaceum	Wild garlic	-	Leaf	Aqueous ext.	100% mortali	ty at1ml for 72hrs	62
Millingtonia hortensis	Indian cork tree	IV	Leaf	Acetone	123.0 ppm	323.6 ppm	3
		Ι	Leaf	Aqueous ext.	4%	5.40%	107
Spathodea campanulata	African	II			7.17%	7.74%	
	tuliptree	III			9.13%	10.64%	
		IV			16.12%	17.50%	
	1	Fa	mily:-Burser	aceae			
Commiphora berryi	Indian balm of Gilead	Early III	Leaf	Methanol	96.52 ppm	121.24 ppm	32
	1	Fam	ily:-Caesulpi	naceae			
Cassia tora	Sicklesenna	Early IV	Seed	Methanol	20 ppm	40.0ppm	48
		Fai	nily:-Cannab	aceae			
Cannabis sativa	Hemp	-	Leaf	Ethanol	5000ppm	-	53
		Far	nily:-Caulerp	aceae			
Caulerpa scalpelliformis	Indian cork tree	Larvae IV	Whole	-	53.7 ppm	-	65
		Fa	mily:-Cleoma	aceae			
				Hexane	179.26 ppm	325.64 ppm	
	Asian anidan			Acetone	126.12 ppm	224.16 ppm	8
Cleome viscose	flower	III	Leaf	Benzene	82.43 ppm	148.67 ppm	
				Methanol	123.34 ppm	216.18 ppm	
		Fa	l amilv:-Clusia	ceae	II II		
			Leaf	Ethyl acetate	35 mg/ml	-	
Calophyllum inophyllum	Sultan champa	-	seed	Ethyl acetate	8.2 mg/ml	-	- 56
		For	nilv:-Cucurbi	taceae	0.2 mg/m		
	Bitter	1' 411		uncar			
Citrullus colocynthis	cucumber	IV	Seed	Petroleum ether	52.62 ppm	153.31 ppm	12

ISSN 2348-313X (Print) ISSN 2348-3148 (online)

International Journal of Life Sciences Research

Momordica charantia	Bitter gourd	Early IV	Fruit	Hexane	260.14 ppm	663.29 ppm	28				
Solena amplexicaulis	Amantamal	Early III	Leaf	Ethanol	125.91 ppm	-	41				
Family:-Dictyotaceae											
Dictyota dichotoma	forkweed	-	Whole plant	Acetone	61.7 ppm	-	65				
		Fan	nily:-Elaeagan	naceae			, 1				
	0.1 1		I G	Acetone	90.8 ppm	217.2 ppm	10				
Elaeagnus indica	Silverberry	IV	Leaf	Ethyl acetate	151.2 ppm	456.1 ppm	13				
Family:-Euphorbiaceae											
Internet	A :	Late III instar	Seeds	Hexane	LD50 =0.067%	LD90 = 0.14 %	7				
Jatropa curcas	Airandi	IV	Leaf	Petroleum ether	84.85 ppm	400.68 ppm	12				
Croton bonplandianus	Three leaved caper	Early III	Leaf	Methanol	131.72 ppm	214.96 ppm	32				
Euphorbia hirta	Asthma weed	Early IV	Leaf	Petroleum ether	272.36 ppm	703.76 ppm					
Euphorbia tirucalli	Pencil tree	Early IV	Leaf	Petroleum ether	4.25 ppm	13.14 ppm	33				
Pedilanthus tithymaloides	Devil's backbone	Early IV	Leaf	Petroleum ether	55.26 ppm	256.77 ppm					
Codiaeum variegatum	San francisco	III to IV	Leaf	Aqueous ext.	LD 50=37.6191 g%	LD90=100.303 g%	55				
		Early IV	Leaf	Acetone	251.17ppm	462.17 ppm	19				
				Chloroform	588.76 ppm	1059.78ppm					
Acalypha indica	Indian copperleaf			Hexane	128.24 ppm	230.40 ppm					
				Petroleum ether	220.42 ppm	396.75 ppm					
				Ethanol	665.95 ppm	1198.85 ppm					
Ricinus communis	Castor oil plant	Early IV	Leaf	Hexane	64.26 ppm	140.18 ppm	28				
	not given			Hexane	126.18 ppm	354.23 ppm	44				
Breyenia vitis -idaea		III	Leaf	Chloroform	111.90 ppm	258.94 ppm					
				Ethyl acetate	98.21 ppm	130.03 ppm					
	1	F	amily:-Fabac	eae	1		1				
				Hexane	208.30 mg/L	479.32 mg/L					
Sesbania grandiflora	Agati	ш	Leaf	Butanol	186.90 mg/L	447.55 mg/L	20				
2				Propanol	228.78 mg/L	539.79 mg/L					
				Ethanol	51.16 mg/L	100.87 mg/L					
Millettia pachycarpa	Fish poison climber	Early IV	Root bark	Ethanol	98.47 ppm	-	17				
				Petroleum benzene	45.32 mg/L	99.321mg/L					
				Hexane	169.25 mg/L	201.623 mg/L					
Acacia nilotica	Arabic	IV	Seeds	Chloroform	158.13 mg/L	198.236 mg/L	110				
	gum/kikar			Ethyl acetate	59.12 mg/L	75.8216 mg/L					
				Acetone	103.68 mg/L	162.03 mg/L					
		IV	Leaf	Petroleum ether	70.42 ppm	338.10 ppm	12				
Vicia tetrasperma	lentil vetch	Early IV	Seed	Methanol	100% mortalit	y at 200 ppm dose	48				

International Journal of Life Sciences Research ISSN 2348-3148 (online)

				Diethyl ether	260.77 ppm	468.65 ppm	
				Dichloromethane	263.98 ppm	465.25 ppm	
Abrus precatorius		IV	Leaf	Ethyl acetate	251.01 ppm	445.49 ppm	43
				Methanol	226.59 ppm	426.56 ppm	
				Hexane	260.80 ppm	462.57 ppm	1
	•	Fa	mily:-Gerania	aceae			
Pelargonium graveolens	Rose geranium	III and IV	Whole plant	microwave assisted Hydro distillation	108.96 ppm	LC95=176.61 ppm	21
		F	amily:-Gneta	ceae		1	<u>I</u>
Gnetum ula	-	Early III	Leaf	Ethanol	135.1 ppm	-	41
		Fai	nily:-Legumi	nosae			<u>.</u>
Milletia dura	mubatia	II	Seed	Chloroform	3.5 µg/ml	-	108
Derris species	common erris		Root	Ethanol	8.54µg/ml		
Erythrina mulungu	Mulungu	-	Stem bark	Ethanol	67.9µg/ml	-	15
Pterodon polygalaeflorus	milkworts		Seed	Ethanol	35.79µg/ml		
Cassia obtusifolia	Coffee weed	IV	Seed	Methanol	40.0 ppm	LC 95 =50ppm	48
		I	amily:-Labia	ites			
				Ethyl acetate	153.39mg/L	265.67 mg/L	
Ocimum sanctum	Holy basil	Early III	Leaf	Hexane	175.12 mg/L	290.07mg/L	10
				Methanol	134.73mg/L	237.97 mg/L	
Mentha piperita	Peppermint	Early IV	Leaf	Ethanol	111.9ppm	295.18ppm	61
Minthostachys setosa	Andean mint	Ι	Whole plant	Dichloromethane	9.2 µg/ml	100%at25.2 μg/ml	63
Thymus vulgaris	Thyme	III+IV instar	Whole plant	microwave assisted Hydro distillation	45.73ppm	LC 95=96.26 ppm	21
	•	Fa	amily:-Lamia	ceae			
Salvia officinalis	Garden sage	III+IV instar	Whole plant	microwave assisted Hydro distillation	76.43 ppm	LC 95=123.92 ppm	21
Ocimum basilicum	Sweet basil	IV	Leaf	Ethanol	141.95 ppm	445.12 ppm	30
Ocimum gratissimum	African basil	Early IV	Leaf	Ethanol	19.50 mg/L	-	16
		F	amily:-Liliac	eae		1	
		Ι	Leaf		162.74 ppm	442.98 ppm	[
47	11 1	II			201.43 ppm	518.86 ppm	
Aloe vera	knorpad	III		Petroleum ether	253.30 ppm	563.18 ppm	9
		IV			300.05 ppm	612.96 ppm	
		Fa	amily:-Laura	ceae			
Cinnamomum camphora	camphor	-	Camphor	-	114.79 ppm	-	40
Cinnamomum microphyllum		IV	Leaf	Hydro distillation	6.7 µg/ml	-	54
Cinnamomum mollissimum		IV	Leaf	Hydro distillation	10.2µg/ml	-	54

ISSN 2348-313X (Print) International Journal of Life Sciences Research ISSN 2348-3148 (online)

Vol. 6, Issue 3, pp: (61-80), Month: July - September 2018	8, Available at: <u>www.researchpublish.com</u>

Cinnamomum rhyncophyllum		IV	Leaf	Hydro distillation	6.0 µg/ml	-	
Cinnamomum pubescens		IV	Leaf	Hydro distillation	12.8 µg/ml	-	
Cinnamomum coradatum		IV	Leaf	Hydro distillation	183.6 µg/ml	-	
Cinnamomum scotechinni		IV	Leaf	Hydro distillation	21.5 µg/ml	-	
Cinnamomum sintoc		IV	Leaf	Hydro distillation	41.1 µg/ml	-	
Cinnamomum impressicostatum		IV	Leaf	Hydro distillation	10.7 µg/ml	-	
		Fa	mily:-Lythra	ceae			
				Methanol	22.10 ppm	43.71 ppm	
Pemphis acidula	Small leaved mangrove	Late III	Leaf	Acetone	57.66ppm	106.51 ppm	38
	U			Benzene	43.99ppm	84.87 ppm	
		Fa	amily:-Malva	ceae			
Ceiba pentandran	Kapok	Early III	Leaf	Methanol	118.85 ppm	171.40ppm	32
Abuliton indicum	Indian Mellow	Early IV	Stem	Hexane	183.61 ppm	470.48 ppm	28
		Fami	ly:-Menisper	miaceae			<u> </u>
Abuta grandifolia	Velvet leaf		Fruit	Dichloromethane	2.6 µg/ml	100% at 8.1	63
		F	amily•-Melia	reae	10	µg/ml	
		Early IV	Leaf	Ethanol	8 32 mg/mL		16
Azadirachta indica	Neem	III to IV	Seed	Ethanol	0.017-	Lc 99=0.1333-	26
Ficus religiosa	Peepul tree	Early III	Leaf	Methanol	111.14 ppm	155.42 ppm	32
Melia dubia	Persian liliac	Early III	Leaf	Methanol	100.12 ppm	127.18 ppm	32
Lansium domesticum	Langsat	III - IV	Leaf	Aqueous ext.	LD 50=4.0282 g%	LD 90=16.3316 g%	55
Melia volkensii	Mukau	-	Fruit	Hexane : Ethyl Acetate Fraction 1:1	50 ppm	-	27
		Ι			488.945 ppm	657.852 ppm	
Melia azaderach	Pride of	II	Leaf	Acetone	515.360 ppm	716.474 ppm	101
menu uzuueruen	India	III	Loui	rectone	531.397 ppm	657.852 ppm	
		IV			587.832 ppm	805.308 ppm	
		F	amily:-Mora	ceae			
Ficus microcarpa	Chinese banyan	Early III	Leaf	Methanol	91.63 ppm	110.88 ppm	32
	-	Fa	amily:-Myrta	ceae			
Syzygium aromaticum	Clove	III	Buds	Hydro distillation	93.56 ppm	167.85 ppm	37
Syzygium cumini	Jamun	L IV	Leaf	Acetone	223.9 ppm	524.8 ppm	3
Eucalyptus globules	Bluegum	III+IV instar	Whole	Microwave assisted	92.55ppm	LC95=	21
	-		Plant	Hydro distillation		136.82 ppm	
Eucalyptus citriodora	Lemon scented gum	-	Leaf	-	91.76 ppm	-	52
Eucalyptus urophylla	Rose gum	IV	Leaf	Hydro distillation	95.5 ppm	166.3 ppm	11
Eucalyptus camaldulensis	Red river gum	IV	Leaf	Hydro distillation	31.0 ppm	71.8 ppm	11

International Journal of Life Sciences Research ISSN 2348-3148 (online)

		F	amily:-Oleac	eae			
Jasminum officinale	Jasmine	-	Flower	-	42.86ppm	-	40
		Fai	mily:-Papaver	raceae			
Argemone mexicana	Mexican poppy	IV	Leaf	Petroleum ether	48.99 ppm	189.10ppm	12
		Fa	mily:-Pedalia	iceae			
Sesamum indicum	Sesame	Early III	Leaf	Methanol	105.70 ppm	139.27 ppm	32
		Fa	amily:-Pipera	ceae			
Piper longum	long pepper/Pipli	Early IV	Fruit exocarp	Ethanol	2.23 ppm	-	
Piper ribesoides wall	Pippali	Early IV	Fruit exocarp	Ethanol	8.13 ppm	-	14
Piper sarmentosum Roxb.	wild pepper	Early IV	Fruit exocarp	Ethanol	4.06 ppm	-	
Ottonium anisum	Saunf/anise	III	Leaf	Hexane	100% morta	lity at 200 µg/ml	42
		F	amily:-Pinna	ceae			
Pinus sylvestris	Pine tree	-	Needles	Hydro distillation	100.39mg/mL	142 mg/ml	49
Cedrus deodara	Deodar	-	Leaf	-	44.36 ppm	-	40
		Fam	uly:-Phyllant	haceae			
Phyllanthus amarus	Hurricane weed	Early IV	Leaf	Petroleum ether	90.92 ppm	384.19 ppm	33
Phyllanthus emblica	Amla	Early IV	Fruit	hexane	298.93 ppm	454.32 ppm	28
]	Family:-Poace	eae			
Cymbopogon flexious	Lemongrass	III	Whole plant	Hydro distillation	52.736 ppm	-	34
Coix lacryma	Job's tears	Early III	Leaf	Methanol	92.77 ppm	113.61	32
		Fa	mily:-Polygal	aceae			
Polygala arvensis	Field	_	Leaf	Benzene	58.21 ppm	75.32 ppm	50
T oryguna arvensis	milkwort	_	Leai	Methanol	208.45 ppm	260.45 ppm	50
		F	amily:-Rubia	ceae			
Spermacoce hispida Linn.	Shaggy butterweed	Early III	Leaf	Ethanol	177.2 ppm	-	41
Anthocephalus cadamba	Kadam tree	Early III	Leaf	Ethanol	154.09 ppm	-	41
				Chloroform	80.7 ppm	485.0 ppm	
Psychotria ostosulcata	-	IV	Leaf	Hexane	68.5 ppm	424.1 ppm	109
				Ethyl acetate	65.7 ppm	360.1 ppm	
		F	family:-Rutac	eae			
Ruta chaliphenses	Sataapha	II	Leaf	Petroleum ether	173.66 ppm	-	6
Zanthoxylum limonella Alston	Oligotrichum Tan	-	Fruit	-	24 ppm	55 ppm	59
Zanthoxylum armatum	winged prickly ash	-	Seeds	-	54 ppm	171 ppm	58
Atlantia monophylla	Wild lime	-		TT 1 1	93.2 ppm	146.12 ppm	102
Atlantia racemosa	Bombay atlantia	-	Leaf	Hydro distillation	97.09 ppm	175.77 ppm	103
Feronia limonia	Woodapple	IV	Leaf	Acetone	57.23 ppm	-	102
Glycosmis pentaphylla	Orange berry	IV	Leaf	Acetone	0.0585mg/mL	303.746mg/mL	47

International Journal of Life Sciences Research ISSN 2348-3148 (online)

	1			Methanol	0.121mg/mL	637.845mg/mL					
				Chloroform	0.112mg/mL	31.385mg/mL					
				Ethyl acetate	0.204mg/mL	22.687mg/mL					
		Ι			29.90 µg/ml	86.0 µg/ml					
	Wild orange	II			31.75 µg/ml	110.97 µg/ml	1				
Toddalia asiatica	tree	III	Leaf	Hydro distillation	54.70 µg/ml	296.38 µg/ml	125				
		IV			86.63 µg/ml	500.97 µg/ml					
Citrus citratus	Lemongrass	Early IV	Leaf	Ethanol	34.67 mg/mL	-	16				
Family:-Rhizophoraceae											
			Bark		0.03µg/ml	0.0915µg/ml	1				
			Leaf		0.078µg/ml	0.087µg/ml					
Rhizophora mucronata	Red	Late IV	Hypocotyl	Ethanol	0.053µg/ml	0.1037µg/ml					
	mungrove		Stilt root		0.0275µg/ml	0.0675µg/ml					
			Collar		0.0673µg/ml	0.1097µg/ml					
			Bark		0.0943µg/ml	0.148 µg/ml					
		Late IV	Leaf		0.085µg/ml	0.198 µg/ml	51				
Rhizophora apiculata	not given		Hypocotyl	Ethanol	0.083 µg/ml	0.1303 µg/ml					
			Collar		0.0846 µg/ml	0.1283 µg/ml					
			Leaf	Dahamat	0.091µg/ml	0.1109µg/ml					
Bruguiera cylindrica	Bakau putih	Late IV	Hypocotyl		0.082µg/ml	0.121 µg/ml					
			Leaf	Ethanol	0.0892µg/ml	0.129 µg/ml					
Ceriops decandra	Mangrove	Late IV	Collar		0.082µg/ml	0.130 µg/ml					
	1	Fa	mily:-Sapinda	aceae			1				
Dodonaea viscose	Vilayati Mehandi	Π	Leaf	Petroleum ether	126.18 ppm	-	6				
		Fa	amily:-Solana	ceae							
Costrum no sturmum	Dootroni	Ш	I f	Ethyl aeetate		300 µg/ml	110				
Cestrum nocturnum	Kaatrani	111	Leai	Methanol		65 µg/ml	116				
Datura stramonium	Jimsonweed	LateIII/early IV	Leaf	Ethanol	LD50=86.25 ppm	LD 90=196.38 ppm	18				
Withania somnifera	Indian ginseng	Iv	Leaf	Petroleum ether	89.19 ppm	281.34 ppm	12				
				Hexane	269.25 mg/L	623.51 mg/L					
Solanum niarum	black		Leaf	Butanol	328.03 mg/L	911.4 mg/L	20				
Solanum nigrum	nightshade		Leai	Propanol	94.33 mg/L	216.40 mg/L	20				
				Ethanol	34.12 mg/L	88.11 mg/L					
		Ι			11.67 ppm		117				
solanum villosum	Red nightshade	III	Berry	Chloroform: methanol	22.06 ppm	-					
		IV			49.84 ppm						
		Fam	ily:-Thymela	eaceae							
Dirca palustries	Leatherwood	IV	Seeds	Methanol	Ld 50=100	-	57				

International Journal of Life Sciences Research ISSN 2348-3148 (online)

Vol. 6, Issue 3, pp: (61-80), Month: July - September 2018, Available at: www.researchpublish.com

					µg/ml						
Aquilaria malaecensis	Agarwood	Late III	Wood	Hydro distillation	20.19 mg/L	-	104				
Family:-Umbelliferae											
Apium graveolens	Wild Celery	IV	Seed	Methanol	-	50 µg/ml	5				
Family:-Valerianaceae											
Valeriana jatamansi Bal (o)	Indian valerian	-	Root	-	51.2 mg/L	-	35				
Family:-Verbenaceae											
Lantana camera	Raimuniya	II	Leaf	Petroleum ether	136.89 ppm	-	6				
	Family:-Zingiberaceae										
Curcuma longa L	Turmeric	IV	-	Hydro distillation	115.6 ppm	193.3 ppm	124				
				Hexane	26.4 µg/ml						
Curcuma xanthorrhiza	Java ginger	Late III	Phizome	Dichloromethane	65.9 µg/ml		36				
Curcuma xaninorrniza	Java giligei	Late III	Rinzonie	Ethyl acetate	52.6 µg/ml		50				
				Methanol	68.6 µg/ml						
Zingiber officinale	Garden ginger	IV	Rhizome	Petroleum ether	4.25 ppm	-	22				
Curcuma heyneana Val.&Zijp		III- IV	Rhizome	Ethanol	35.33 µg/ml	86.02 µg/ml	119				
Zingiber officinale	Garden ginger	IV	Leafs	Hydro distillation	40.5 ppm	85.53 ppm	124				

3. DISCUSSION

Control of vector mosquito borne diseases is becoming too major challenge due to resistance in mosquito species, surveillance of vector and expansion of its boundary of distribution. Mosquitoes have developed its resistance system against used insecticides. Therefore, researchers devoted to find out an alternative, permanent, eco-friendly remedy against mosquito control strategies from natural sources. It may be in the form of essential oils, tablets, creams, sticks. Thus, it may plays an important role in the interruption of transmission of mosquito borne diseases at individual as well as community level [121].

Botanical compounds are rich in bioactive components so they may serve as a very good alternative source for control of mosquitoes [111]. Mosquitoes developed genetic resistance to both synthetic insecticides [113] and also to some biopesticides like Bacillus sphaericus [112]. Innumerable plant extracts were tested against different larval instars of mosquitoes shows promising potential larvicidal activity. Earlier study observed that phytochemicals plays a major role in mosquito control programme and observed the presence of carbohydrates, saponins, phytosterols, phenols, f lavonoids, tannins in the plant extracts possess mosquito larvicidal activity [114,115]. For instance, Eucalyptus camadulensis shown excellent inhibitory effects against dengue vector Aedes aegypti and Aedes albopictus[11]. The bioactive components found in the leaves extracts of Eucalyptus camadulensis and effective against Aedes aegypti larvae are alphaphellandrene, limonene, p-cymene, gamma -terpiene, terpinolene and alpha terpiene [11]. Rahuman et al (2000) studied the effectiveness of n-hexadecanoic acid in leaves extract of Feronia limonia as larvicidal against IV instar larvae of all major genera of mosquitoes [102]. The bioactive components isolated by GC-MS in the hexane leaf extract of A. indica and reported to possess larvicidal actions were Benzene, 1, 2, 3-trimethyl (1.08%), piperidine-2-5-dione 69(2.78%), 3, 7, 11, 15-Tetramethyl-2-hexadecen-1-01 (9.89%), n-Hexadecanoic acid (11.57%), phytol (12.94%), 9, 12, 15octadecatrienoic acid (43.89%), octadecanoic acid (2.54%), 9, 12, octadecanoic acid(0.88%), heptacosane (1.75%) and squalene (12.69%)[19]. The bioactive components oleic acid and linoleic acid in the methanolic extraction of seeds of Dirca palustris exhibits LD50 values of 100µg/ml [57]. In the hydro distillate of seed essential oil of Acacia nilotica contains molecules of hexadecane and heptacosane as cidal agent [11]. In the bioassay guided fractionation of Achranthes aspera saponin was isolated and found to be effective as larvicidal against Aedes aegyti with LC50 values of 18.20 ppm [29]. Vector control program should focus attention on eliminating mosquitoes at larval stages using plant extracts. The

ISSN 2348-313X (Print) International Journal of Life Sciences Research ISSN 2348-3148 (online) Vol. 6, Issue 3, pp: (61-80), Month: July - September 2018, Available at: www.researchpublish.com

advantage of targeting larvae is that they cannot escape from their breeding sites until adult emergence and also reduces overall use of pesticides to control adult mosquitoes by aerial application of adulticidal chemicals [116]. So easiest way to monitor the mosquito population aims to interrupt the mosquito life cycle during larval development [123].

4. CONCLUSION

The use of plant derivatives such as essential oils, in the production of natural larvicidal insecticides, could be a promising tool which help to reduce the spread of dengue fever. This is because these products are the natural sources of substances displaying insecticidal activity against mosquito (affecting the different stages of mosquito development). In addition, these products are biodegradable and express low toxicity towards non target organisms. Evolution of the resistance to plant derived compounds has rarely been observed. However, it is important to standardize the procedures used for the determination of larvicidal activity. To this effect, the WHO must establish specific procedures for the control or elimination of *Aedes aegypti* larvae. Numerous articles published till date reflects high efficacy of essential oils against larvae of mosquito species. Need of time is to initiate the large scale commercial production of encapsulated tablets, granules of essential oils, Bonide Mosquito Beater or Bonide Neem oil like products for cosmopolitan vector control.

ACKNOWLEDGEMENT

The authors sincerely express their gratitude to the Principal J.D. Kabra, JES College, Jalna. for his constant support during study.

REFERENCES

- Komalamisra N; Trongtokit Y; Rongsriyam Y; Apiwathnasorn C; Screening for Larvicidal Activity in some Thai Plants against four Mosquito Vector Species. Southeast Asian J.Trop Med. Public health vol.36(6), nov.2005 pp1412-1422
- [2] Sharma, M., Saxena, R.C. Phytotoxicological activity of Tagetes erecta in aquatic stages of Anopheles stephensi. *Ind. J. Malar.*, 1994; *31*: pp 21-26.
- [3] Kaushik R.; Saini P; (Sept 2009) Screening of some semi –arid region plants for larvicidal activity against Aedes aegypti mosquito. J.Vector Borne Dis.46, pp244-246
- [4] Imam H.; Zarnigar, Sofi G. (2014) Mosquito Larvicidal efficacy of Acorus calamus extracts against Aedes aegypti. L larvae. Asian Pac J Trop Dis 2014; 4(Suppl 1): S181-S185
- [5] Rafikali A; Momin; Muraleedharan G; Nair.(2001) Mosquitocidal, Nematicidal and Antifungal compounds from Apium graveolens L. Seeds. J. Agric. Food Chem, 49 (1), pp 142-145.
- [6] Mohamed H; Madkour; Ahmed A; Zaitoun; Fatma A; Singer. (2014) Innovative bio controlling method of dengue vector; Aedes aegypti. J. Agric. Food Sci.: 6, pp 208-213.
- [7] Ojha K; Pattabhiramaiah M. (2013) Evaluation of phyotochemicals, Larvicidal activity of Jatropa curcas oil against Aedes aegypti. IJARS, vol- 2: 12; pp 1-12.
- [8] Krishnappa K.; Elumalai K. (2013) Mosquitocidal properties of Basella rubra & Cleome viscosa against Aedes aegypti (Linn) (Diptera: Culicidae). European Review for Med and Pharmacolog. Sci,(17);pp1273-1277.
- [9] Subramanium J; Kovendan K; Palanisamy M; Murugan K; Walton W. (2012) Mosquito Larvicidal activity of Aloe vera (Family: Liliaceae) Leaf extract & B. Sphaericus against chikungunya vector Aedes aegypti. Saudi J. /Bio sci. vol: 19, pp 503-509
- [10] Gokulakrishnan J.;Baranitharan M; Dhanasekaran S;Kavikuyil R;Abirami R;BakuselvakumarJ.D. Mosquito larvicidal properties of Ocimum sanctum Linn(Lamiaceae) against Aedea aegypti(Linn), Anopheles stephensi (Liston),Culex quinquifasciatus (Say).LSA, Vol .I, issue I (2015) pp 46-52
- [11] Cheng SS, Huang CG, Chen YJ, Yu JJ, Chen WJ, Chang ST (2009) Chemical compositions and larvicidal activities of leaf essential oils from two eucalyptus species. Biores Technol 100:452-456
- [12] Sakthivadivel M, Daniel T (2008) Evaluation of certain insecticidal plants for the control of vector mosquitoes viz. Culex quinquefasciatus, Anopheles stephensi and Aedes aegypti. Appl. Entomol. Zool. 43:57-63

- [13] Shivkumar M.S.; Shrinivasa R.; Nataranjan D. (2013). Larvicidal potential of some Indian medicinal plant extracts against Aedes aegypti (L). Asian J.Pharm. Clin.Res.Vol. 6 (3) pp 77-80.
- [14] Chaithong U, Choochote W, Kamsuk K, Jitpakdi A, Tippawangkosol P, Chaiyasit D, *et al.* Larvicidal effect of pepper plants on *Aedes aegypti* (L.) (Diptera: Culicidae). *J Vector Ecol* 2006; *31:* 138-44.
- [15] Omena de C, Navarro DMAF, Paula de JE, Ferreira de Lima JSMR, Sant'Ana AEG. Larvicidal activities against *Aedes aegypti* of Brazilian medicinal plants. *Bioresource Technol* 2007; 98: 2549-56.
- [16] Mgbemena IC. Comparative evaluation of larvicidal potentials of three plant extracts on *Aedes aegypti*. Journal of American Science. 2010; 6:435-440.
- [17] Lalchhandama K. Mosquitocidal activity of *Millettia pachycarpa* on the larvae and eggs of *Aedes aegypti*. Annals of Biological Research. 2011; 2(3):217-222.
- [18] Swathi S, Murugananthan G, Ghosh SK, Pradeep AS. Larvicidal and repellent activities of ethanolic extract of *Datura stramonium* leaves against mosquitoes. International Journal of Pharmacognosy and Phytochemistry Research. 2012; 4(1):25-27.
- [19] Vijayakumar S, Mani P, Bastin TMMJ, Ravikumar G. Mosquito larvicidal, oviposition deterrent and repellent properties of *Acalypha indica* L. extracts against *Aedes aegypti*, *Anopheles stephensi* and *Culex quinquefasciatus*. International Journal of Medicine and Biosciences. 2012; 1(3):33-41.
- [20] Raveen R.; Ahmed F.; Pandeeswari M.; Reegan D.; Tennyson S.; Arivoli S.; Jaykumar N. (2017) Laboratory evaluation of a few plant extracts for their ovicidal, larvicidal & pupicidal activity against medically important human dengue chikungunya & zika virus vector Aedes aegypti Linnaeus 1762 (Diptera: Culicidae). I JMR 2017:4(4): pp 17-28
- [21] Rios N.; Stashenko E.; Duque J. (2017) Evaluation of the insecticidal activities of essential oils and their mixtures against Aedes aegypti (Diptera: Culicidae) Revista Brasileira de Entomologia: 61(2017) pp 307-311.
- [22] Rahuman A.A.; Gopalkrishnan G.; Venkatesan P; Kannappan G.; Bagavan A. (2008) Mosquito Larvicidal activity of isolated compounds from the rhizome of Z. officinale vol 22(8):pp 1035-1039
- [23] Chore JK, Obonyo M, Wachira FN, Mireji PO. Larvicidal Activity Of Selected Aloe Species Against Aedes aegypti. (Diptera: Culicidae. Journal of Insect Science. 2014; 14:202.
- [24] Zuharah W.F.;Fadzly N.;Ali Y.;Zakaria R. Juperi S.; Asyraf M.;Dieng H. Larvicidal efficacy screening of Anacardaciae crude extracts on the dengue haemorrhagic vector, Aedes aegypti.Trop.Biomed.31(2),2014; pp 297-304
- [25] Thorsel W, Mikiver A, Malander I, Tunón H (1998) Efficacy of plant extracts and oils ,larvicidal action of ethanolic extracts from fruit endocarps of *Melia azedarach* and *Azadirachta indica* against the dengue mosquito *Aedes aegypti* https://doi.org/10.1016/j.toxicon.2004.07.009Get rights and content
- [26] Mwangi, R. W. and Rembold, H. (1988), Growth inhibiting and larvicidal effects of *Melia volkensii* extracts on *Aedes aegypti* larvae. Entomologia Experimentalis et Applicata,46: 103-108
- [27] Kumar S., Wahab N., Mishra M., Warikoo R. "Evaluation of 15 Local Plant Species as Larvicidal Agents Against an Indian Strain of Dengue Fever Mosquito, *Aedes Aegypti* L. (Diptera: Culicidae)." *Frontiers in Physiology* 3 (2012): 104. *PMC*. Web. 30 Apr. 2018.
- [28] Bagavan, A., Rahuman, A.A., Kamaraj C., Geetha K.Larvicidal activity of saponin from Achyranthes aspera against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res (2008) 103: 223-229[PMID: 18392726]
- [29] Kumar S, Warikoo R, Mishra M, Samal RR, Shrankhla, et al. (2017) Impact of Ocimum basilicum Leaf Essential Oil on The Survival and Behaviour of An Indian Strain of Dengue Vector, Aedes aegypti (L.). Vector Biol J 2:2.
- [30] Rodrigues A.M.S.;Pauda de J.E.; Degallier N.;Molez J.F. and Espindola L.S.Larvicidal Activity of some cerrado plant extracts against Aedes aegypti. J.American mosquito control association (2006) vol.22 (2) pp314-331

- [31] Deepa J.; Gokulakrishnan J, Baranitharan M.;Dhanasekaran S..Larvicidal activity of Indian medicinal plants on the dengue fever mosquito Aedes aegypti Linnaeus. Int. J .Pure And App .Zoo.(2015) vol.3, issue 2,pp130-136
- [32] Rahuman AA; Gopalkrishnan G; Venkatesan P; Geetha K. Larvicidal activity of some Euphorbiaceae plant extracts against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 2008 Apr.102 (5):867-873. Epub 2007 dec.29 [Pubmed PMID 18163189]
- [33] Bhatt B.J. Comparative analysis of larvicidal activity of essential oils of Cymbopogon flexeous (Lemongrass) and Tagetes erecta (Marigold) against Aedes aegypti larvae.Euro.J.Exp.Bio.(2013), 3(5):pp422-427
- [34] V. K. Dua, M. F. Alam, A. C. Pandey, Swapnil Rai, A. K. Chopra, V. K. Kaul, and A. P. Dash Insecticidal Activity of Valeriana Jatamansi (Valerianaceae) Against Mosquitoes Journal of the American Mosquito Control Association Jun 2008 : Vol. 24, Issue 2, pg(s) 315-318
- [35] Sukari M.A.;Rashid NY;Neoh BK; Baker NHA; Riyanto S.; Ee GCL. Larvicidal activity of some *Curcuma* and *Kaempferia* Rhizome extracts against dengue fever mosquito Aedes aegypti L.(Diptera :Culicidae) Asian J. Che.2010 Vol. 22,(10), pp 7915-7919.
- [36] Araujo A.F.; Paes J.T.R.; Deus J.T. Cavalcantri S;Nunes R; Alves P.B.;Macoris M.Larvicidal activity of Syzygium aromaticum (L) Merr.and Citrus sinensis (L) Osbeck essential oils and their antagonistic effects with temephos in resistant populations of Aedes aegypti. Mem.Inst. Oswaldo Cruz,Rio de Janeiro (2016) Vol. 111(7) :pp 443-44
- [37] Samidurai K. Jebanesan A, Saravanakumar A., Govindarajan M and Pushpanathan T. Larvicidal, Ovicidal and Repellent Activities of Pemphis acidula Forst. (Lythraceae) Against Filarial and Dengue Vector Mosquitoes Academic Journal of Entomology 2 (2): 62-66, 2009 ISSN 1995-8994
- [38] Rodrigues A.M.S., Paula J.E., Roblot F., Fournet A., Espindola L.S. Larvicidal activity of *Cybistax antisyphilitica* against Aedes aegypti larvae..Fitoterapia Vol.76, issue 7-8, Dec 2005,pp 755-757
- [39] Tyagi V., Patel R., Hazarika H., Dey P., Goswami D and Chattopadhyay P. Chemical composition and bioefficacy for larvicidal and pupicidal activity of essential oils against two mosquito species. International Journal of Mosquito Research 2017; 4(4): 112-118
- [40] Dhanasekaran, S., Krishnappa, K., Anandan, A. and Elumalai, K. Larvicidal, ovicidal and repellent activity of selected indigenous medicinal plants against malarial vector *Anopheles stephensi* (Liston.), dengue vector *Aedes aegypti* (Linn.) and Japanese encephalitis vector, *Culex tritaeniorynchus* (Giles.) (Diptera : Culicidae) Journal of Agricultural Technology 2013 Vol. 9(1): 29-47
- [41] Marques A M, Velozo LS, CarvalhoM A, Serdeiro M T, Honório N A, Kaplan M A C & Maleck M Larvicidal activity of *Ottonia anisum* metabolites against *Aedes aegypti*: A potential natural alternative source for mosquito vector control in Brazil *J Vector Borne Dis* 54, March 2017, pp. 61–68
- [42] Thangarasu M, Kaliyamoorthy K, Kuppusamy E.Mosquito larvicidal, ovicidal and pupicidal activities of Abrus precatorius linn. (fabaceae) against dengue vector, aedes aegypti (linn) malarial vector, anopheles stephensi (liston) and filarial vector, culex quinquefasciatus (say) (Diptera : Culicidae) International Journal of Current Innovation Research, Vol. 1, Issue 3, pp 73-80, May 2015
- [43] Jeyasankar A.,&. Ramar G. Larvicidal properties of *Breyenia vitis-idaea* (burm.f.) Fischer (euphorbiaceae) against important vector mosquitoes (Diptera: Culicidae). *J vector borne dis* 51, september 2014, pp. 239–241
- [44] Govindarajan M, Karuppannan P. Mosquito larvicidal and ovicidal properties of Eclipta alba (L.) Hassk (Asteraceae) against chikungunya vector, Aedes aegypti (Linn.) (Diptera: Culicidae) Asian Pacific Journal of Tropical Medicine (2011)24-28
- [45] Thangavel M., Umavathi S., Thangam Y., Thamaraiselvi A. and. Ramamurthy M GC-MS Analysis and Larvicidal Activity of Andrographis paniculata (Burm.F) Wall. Ex Nees. against the Dengue Vector Aedes aegypti (L) (Diptera: Culicidae). Int.J. Curr. Microbiol. App. Sci (2015) 4(7): 392-403 http://www.ijcmas.com

- [46] Ramkumar G, Karthi S, Muthusamy R, Suganya P, Natarajan D, Kweka EJ, et al. (2016) Mosquitocidal Effect of Glycosmis pentaphylla leaf extracts against Three Mosquito Species (Diptera: Culicidae). PLOS ONE 11(7): e0158088. doi:10.1371/journal.pone.0158088
- [47] JANG YS, KIM MK, AHN YJ, LEE HS. Larvicidal activity of Brazilian plants against Aedes aegypti and Culex pipiens. Diptera:Culicidae). Agric Chem Biotechnol 2002; 45: 131-134.
- [48] Fayemiwo K A, Adeleke M A Okoro O P, Awojide S H, Awoniyi I O Larvicidal efficacies and chemical composition of essential oils of Pinus sylvestris and Syzygium aromaticum against mosquitoes. Asian Pac J Trop Biomed 2014; 4(1): 30-34
- [49] Deepa M., Palanisami K. Krishnappa K. and Elumalai K. Mosquitocidal activity of *Polygala arvensis* Willd against *Aedes aegypti* (Linn.), *Anopheles stephensi* (Liston.) and *Culex quinquefasciatus* (Say) (Diptera: Culicidae) International Journal of Mosquito Research 2014; 1 (4): 30-34
- [50] Ali M S, Ravikumar S, Beula J M, Anuradha V & YogananthN. Insecticidal compounds from Rhizophoraceae mangrove plants for the management of dengue vector *Aedes aegypti J Vector Borne Dis* 51, June 2014, pp. 106– 114
- [51] Singh RK, Dhiman RC, Mittal PK. Studies on mosquito larvicidal properties of *Eucalyptus citriodora* Hook (family-Myrtaceae). J Comm. Dis. 2007; 39: 233-6.
- [52] Jalees S, Sharma SK, Rahman SJ, Verghese T (1993) Evaluation of insecticidal properties of an indigenous plant, *Cannabis sativa* L., against mosquito larvae under laboratory conditions. J Entomol Res 17:117-120
- [53] Jantan I, Yalvema MF, Ahmad NW, Jamal JA (2005) Insecticidal activities of the leaf oils of eight *Cinnamomum* species against *Aedes aegypti* and *Aedes albopictus*. Pharm Biol43:526-532 INCOMPLETE
- [54] Monzon RB, Alvior JP, Luczon LL, Morales AS, Mutuc FE (1994) Larvicidal potential of five Philippine plants against *Aedes aegypti* (Linnaeus) and
- [55] Pushpalatha E, Muthukrishnan J (1999) Efficacy of two tropical plant extracts for the control of mosquitoes. J Appl Entomol 123:369-373
- [56] Ramsewak RS, Nair MG, Murugesan S, Mattson WJ, Zasada J (2001) Insecticidal fatty acids and triglycerides from *Dirca palustris*. J Agric Food Chem 49:5852-5856
- [57] Tiwary, M., Naik, S.N., Tewary, D.K., Mittal, P.K., Yadav, S., 2007. Chemical composition and larvicidal activities of the essential oil of *Zanthoxylum armatum* DC (Rutaceae) against three mosquito vectors. J. Vector Borne Dis. 44,198–204
- [58] Pitasawat, B., Champakaew, D., Choochote, W., 2007. Aromatic plant derived essential oil: an alternative larvicide for mosquito control. Fitoterapia 78,205–210.
- [59] Mathivanan T.; Govindarajana M, Elumalaib K.;Krishnappaa K & Ananthan A Mosquito larvicidal and phytochemical properties of *Ervatamia coronaria* Stapf. (Family: Apocynaceae) J Vector Borne Dis 47, September 2010, pp. 178–180
- [60] Kumar S, Wahab N, Warikoo R. Bioefficacy of *Mentha piperita* essential oil against dengue fever mosquito Aedes aegypti L Asian Pac J Trop Biomed 2011; 1(2): 85-88
- [61] Rathy MC, Sajith U and Harilal CC Plant diversity for mosquito control: A preliminary study International Journal of Mosquito Research 2015; 2 (1): 29-33
- [62] Ciccia G, Coussio J, Mongelli E (2000) WALL FRACTION Insecticidal activity against Aedes aegypti
- [63] DAVID J.P, REY D., MARIGO G., and MEYRAN J.E. LARVICIDAL EFFECT OF A CELL- ISOLATED FROM ALDER DECAYING LEAVES. Journal of Chemical Ecology, Vol. 26, No. 4, 2000 Plenum Publishing Corporation 901
- [64] Thangam TS, Kathiresan K (1991) Mosquito larvicidal activity of marine plants extracts with synthetic insecticides. Bot Mar 34:537-539

- [65] Rajeswary M., Govindranjan M. Mosquito larvicidal and phytochemical properties of Ageratina adenophora (asteraceae) against three important mosquitoes. J. Vect. Borne dis. 50, (2013), pp141-143.
- [66] World Health Organization.Dengue guidelines for diagnosis, treatment, prevention and control. 2009. http://whqlibdoc.who.int/publications/2009/9789241547871 eng.pdf
- [67] Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL et.al. The global distribution and burden of dengue. Nature; 496: pp504-507.
- [68] Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis. 2012;6: e1760. doi:10.1371/journal.pntd.0001760
- [69] Yentema O., Alioune O., and Dorosso S.A., 2007. Chemical Composition and Physical Characteristics of the Essential Oil of Cymbopogon schoenanthus (L.) Spreng of Burkina Faso. Journal of Applied Sciences, 7: 503-506.
- [70] 1001- Reference Guide for Essential Oils by Connie and Alan Higley 2016
- [71] Gupta N., Srivastva S., Jain A., Chaturvedi U. Dengue in India, Indian J Med Res 136, September 2012, pp 373-390
- [72] Gould EA, Solomon T. Pathogenic flaviviruses. The Lancet. 2008; 371 (9611): 500-9. 3. Rod
- [73] Gubler DJ: The arboviruses: epidemiology and ecology. In *Dengue Volume II*. Edited by: Monath TP. CRC Press, Boca Raton, FL 1988: 223-260.
- [74] Lt Col M.S. Mustafa, Col V. Rasotgi. Col S. Jain, Lt Col V. Gupta Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Medical journal armed forces India 71 (2015) 67-70
- [75] Guidelines for clinical management of Dengue Fever, Dengue haemorrhagic Fever and Dengue shock syndrome .NVBDCP-2008 Repeat from above
- Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013 Apr 25; 496(7446):504±7. https://doi.org/10.1038/nature12060 Epub 2013 Apr 7. PMID: 23563266
- [77] Guzman MG, Gubler DJ, Izquierdo A, Martinez E, Halstead SB. Dengue infection. Nat Rev Dis Primers.2016 Aug 18; 2:16055. https://doi.org/10.1038/nrdp.2016.55 Review. PMID: 27534439
- [78] WHO report Global Strategy for dengue prevention and control, 2012-2020, http://apps.who.int/iris/bitstream/10665/75303/1/9789241504034_eng.pdf (Accessed 11 November 2017)
- [79] Schwartz E, Weld LH, Wilder-Smith A, von Sonnenburg F, Keystone JS, Kain KC, et al. Seasonality, annual trends, and characteristics of dengue among ill returned travelers, 1997±2006. Emerg Infec Dis. 2008 Jul; 14(7):1081±8. https://doi.org/10.3201/eid1407.071412 PMID: 18598629
- [80] Shihada S, Emmerich P, ThomeÂ-Bolduan C, Jansen S, GuÈnther S, Frank C, et al. Genetic Diversity and New Lineages of Dengue Virus Serotypes 3 and 4 in Returning Travelers, Germany, 2006±2015. Emerg. Infect Dis. 2017 Feb; 23(2):272±275. https://doi.org/10.3201/eid2302.160751 PMID: 28098525
- [81] Mid Term Plan for prevention and control of Dengue and Chikungunya. Directorate of National Vector Borne Diseases Control Programme, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India; 2011.
- [82] Baruah K, Biswas A, Suneesh K, Dhariwal AC. Epidemiology and clinical pathogenesis in 'Major tropical diseases, public health perspective published by Broadway Publishing House; 2014.
- [83] Chakravarti A, Arora R, Luxemburger C. Fifty years of dengue in India. Trans RSoc Trop Med Hyg 2012;106(5):273-82
- [84] NVBDCP. Guidelines for clinical management of dengue fever, dengue hemorrhagic fever and dengue shock syndrome; 2014 http://www.nvbdcp.gov.in/Doc/Dengue-National-Guidelines-2014.pdf

- [85] Shepard DS, Halasa YA, Tyagi BK, Adhish SV, Nandan D, Karthiga KS.et al.Economic and disease burden of dengue illness in India. Am J Trop Med Hyg2014; 91(6):1235–42.
- [86] Kakkar M. Dengue fever is massively under-reported in India, hampering our response. BMJ 2012; 345: e8574.
- [87] Das S., Sarfraz A, Jaiswal N., Das P. Impediments of reporting dengue cases in India Journal of Infection and Public Health 10 (2017) 494–498
- [88] WHO Dengue virus fact sheet, pdf, 2016.05.10.docs
- [89] WHO Regional Office for Europe ,Fact Sheet-Dengue-Eng.pdf , http://www.euro.who.int
- [90] WHO., India , IVM Manual, NVBDCP 2015.
- [91] Chaturvedi UC .The curse of dengue. Indian J Med Res. 2006; 124: 467–70.
- [92] Bush KF, Luber G, Kotha SR, Dhaliwal RS, Kapil V, Pascual M, et al,. Impacts of climate change on public health in India: future research directions. Environ Health Perspect. 2011; 119(6):765–70.
- [93] Singh PK, Dhiman RC. Climate change and human health: Indian context. J Vector Borne Dis.2012; 49(2):55–60.
- [94] Biswas DK, Bhunia R, Basu M.Dengue fever in a rural area of West Bengal, India, 2012: anoutbreak investigation. WHO South-East Asia J Public Health 2014; 3(1): 46–50.
- [95] Kumar A, Sharma SK, Padbidri VS, Thakare JP, Jain DC, Datta KK. An outbreak of dengue fever in rural areas of northern India. J Commun Dis. 2001; 33(4):274–81.
- [96] Mehendale SM, Risbud AR, Rao JA, Banerjee K. Outbreak of denguefever in rural areas of Parbhani district of Maharashtra (India). Indian J Med Res 1991; 93:6–11.
- [97] National Rural Health Mission (2005-2012) GUIDELINES FOR INTEGRATED VECTOR MANAGEMENT FOR CONTROL OF DENGUE / DENGUE HAEMORRHAGIC FEVER, NVBDCP, Delhi
- [98] Kim SI, Shin OK, Song C, Cho KY and Ahn YJ. 2001. Insecticidal activities of aromatic plant extracts against four agricultural insects. Agric. Chem. Biotechnol. 44(1): 23-26.
- [99] Isman, M.B., Grieneisen, M.L., 2014. Botanical insecticide research: many publications, limited useful data. Trends Plant Sci. 19, 140–145
- [100] Ranchitha B., Umavathi S, Thangam Y, and Revathi S. Chemical Constituents and Larvicidal Efficacy of *Melia azedarach* L Leaf Extract against Dengue Vector *Aedes aegypti* L (Diptera : Culicidae) International Journal of Innovative Research in Science, Engineering and Technology (*An ISO 3297: 2007 Certified Organization*) Vol. 5, Issue 3, March 2016 pp 3060 3070
- [101] Rahuman A.A., Gopalkrishnan G., Ghouse B.S., Arumugum S., Himalayan B. Effect of Feronia limonia on mosquito larvae. Fitoterapia Vol.71, Issue 5:(2000) pp553-555
- [102] Das A.K., Kumar S. J., Swamy P.S Larvicidal activity and leaf essential oil composition of three species of genus Atalantia from south India International Journal of Mosquito Research 2015; 2(3): 25-29
- [103] Zaridah M. Z., Nor Azah M. A., & Rohani A. MOSQUITOCIDAL ACTIVITIES OF MALAYSIAN PLANTS Journal of Tropical Forest Science 18(1): 74--80 (2006)
- [104] Remia K.M., Logaswamy. Larvicidal efficacy of leaf extract of two botanicals against the mosquito vector Aedes aegypti (Diptera: Culicidae). Int. J. of Natural Products and Resources.vol I,(2) June 2010, pp 208-212
- [105] Bansal S.K , Karam V. Singh, ,Sharma S, Sherwani M.R.K..Laboratory observations on the larvicidal efficacy of three plant species against mosquito vectors of malaria, Dengue/Dengue Hemorrhagic Fever (DF/DHF) and lymphatic filariasis in the semi-arid desert J. Environ. Biol. 33, 617-621 (2012) ISSN: 0254-8704 CODEN: JEBIDP
- [106] Saranya M, Mohanraj R.S. and Dhanakkodi B. Larvicidal, pupicidal activities and morphological deformities of Spathodea campanulata aqueous leaf extract against the dengue vector Aedes aegypti .European Journal of Experimental Biology, 2013, 3(2):205-213

- [107] Yensew A., Kiplagat JT., Mushibe EK., Derese S., Midiwo JO., kabaru JM., Heydenreich M., Peter MG. Rotenoid derivatives from Kenyan milletia and Derris species as larvicidal agents. 11th NAPRECA Symposium Book of Proceedings, Antananarivo, Madagaskar pp161-168.
- [108] Selvaraj G and Alagarmalai J. Larvicidal properties of Psychotria octosulcata (W. A. Talbot.) (Rubiaceae) crude extracts on human vector mosquitoes Aedes aegypti (Linn.), Culex quinquefasciatus (Say.) and Anopheles stephensi Liston Journal of Entomology and Zoology Studies 2018; 6(1): 1190-1195
- [109] Vivekanandhan P, Venkatesan R. Ramkumar G., Karthi S., Senthil-Nathan S. and Shivakuma MS. Comparative Analysis of Major Mosquito Vectors Response to Seed-Derived Essential Oil and Seed Pod-Derived Extract from Acacia nilotica. Int. J. Environ. Res. Public Health 2018, 15, 388-397
- [110] Sukumar K, Perich MJ, Boobar LR (1991) Botanical derivatives in mosquito control:a review. J Am. Mosq Contr. Assoc. 7:210-237
- [111] Tabashnik, B.E. (1994). Evolution of resistance to Bacillus thuringiensis. Review of Entomology 39: 47-79.
- [112] Wattal, B.L., Joshi, G.C., & Das, M. (1981). Role of agriculture insecticides in precipitating vector resistance. *Journal of Communicable Diseases* 13: 71-73.
- [113] Hag, E.L., Nadi, E.A., El, A.H. and Zaitoon, A.A.. (1999). Toxic and growth retarding effects of 3 plant extracts on *Culex pipiens* larvae (Diptera: Culicidae). *Phytother. Res*, 13: 388-392.
- [114] [115] Palsson, K. and Janeson, T.G.T. (1999). Plant products used as Mosquito repellents in Guinea Bissau, West Africa. *Acta Tropica*, 72: 39-52.
- [115] Gleiser RM and Zygaddo JA. (2007). Insecticidal properties of essential oils from *Lippia turbinate* and *Lippia polystachya* (Verbenaceae) against *Culex quinquefasciatus* (Diptera: Culicidae). *Parasitol. Res*, 101;1349-1354.
- [116] Chowdhury N., Ghosh A and Chandra G. Mosquito larvicidal activities of Solanum villosum berry extract against the dengue vector Stegomyia aegypti BMC Complementary and Alternative Medicine 2008, 8:10 http://www.biomedcentral.com/1472-6882/8/10
- [117] Jawale C., Kirdak R. and Dama L. Larvicidal activity of Cestrum nocturnum on Aedes aegypti Bangladesh J Pharmacol 2010; 5: 39-40
- [118] Sofian FF., Tamba L., Susilawati Y., Runadi D., Tjitraresmi A., Ramadhania ZM, Wardojo MM. Larvicidal Activity Of *Curcuma heyneana* Val. & v. Zijp Rhizome Against *Aedes Aegypti* Larvae. 2017(Suppl.) RJPBCS 8(1S) pp.80-88
- [119] Chakkaravarthy VM, Ambrose T, Vincent S, Arunachalam R, Paulraj MG, Ignacimuthu S, et al. Bioefficacy of Azadirachta indica (A. Juss) and Datura metal (Linn.) leaves extracts in controlling Culex quinquefasciatus (Dipteral: Culicidae). J Entomol 2011; 8(2): 191-197.
- [120] Rana IS, Rana AS. Efficacy of essential oils of aromatic plants as larvicide for the management of filarial vector Culex quinquefasciatus Say (Diptera: Culicidae) with special reference to Foeniculum vulgare. Asian Pac J Trop Dis 2012; 2: 184-189.
- [121] Ghosh, A, Chowdhury N, Chandra G. Plant extracts as potential larvicides. Indian Journal of Medical Research. 2012; 135:581-598.
- [122] Musau, JK., Mbaria JM, Nguta JM., Mathiu M., Kiama SG.Phytochemical composition and larvicidal properties of plants used for mosquito control in Kwale County Kenya International Journal of Mosquito Research 2016; 3(3): 12-17
- [123] Kalaivani K, Senthil-Nathan S., Murugesan AG. Parasitol. Res. (2012) 110:1261
- [124] Maheswaran R., Sukumaran S., Nattudurai G., Ignacimuthu S. Bioefficacy of essential oils from Toddalia asiatica

(L)Lam. against against Dengue vector mosquito Aedes aegypti (L) and Aedes albopictus (Skuse). Ind. J. of Natural products and Resources .Vol. 7(3), Sept. 2016 pp 245-251

Corresponding Author: Mamta H. Goyal, Research Scholar, JES college, Jalna (431203)